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Abstract
Continuous models for anomalous diffusion have previously been tested in the
subdiffusive case by making comparisons to diffusion on a Sierpinski gasket.
This paper extends this discussion to the superdiffusive case by comparing
performance to diffusion on a tree model. Although there is reasonable
agreement within limited regimes for all four models, one model, due to Compte
and Jou, stands out as being consistently sound over all regimes studied.

PACS numbers: 47.27.tb, 05.40.Fb, 47.27.Eq

1. Introduction

Anomalous diffusion processes play an important role in physics, chemistry and biology.
While normal diffusion is characterized by a second moment with a linear time dependence,
anomalous diffusion shows a different time and space behavior. For these processes the second
moment of the distribution scales like

〈r2(t)〉 ∝ t
2

dw . (1)

Processes with this scaling behavior occur in a variety of circumstances and have been observed
with exponents 2/dw smaller and larger than that for ordinary Brownian motion, where it is 1.
For dw > 2, we refer to the process as subdiffusive, because the particles diffuse slower than
in regular diffusion; examples for such behavior occur for instance in charge carrier transport
in amorphous semiconductors [1, 2], or the motion of a bead in a polymer network [3]. For
dw < 2 we refer to the process as superdiffusive, because the particles spread faster than in
regular diffusion; examples for such behavior include relative diffusion of two particles in
turbulent flows [4], diffusion of tracer particles in vortex arrays in a rotating flow [5] and
layered velocity fields [6].

It is by no means clear that all those different phenomena are due to the same underlying
mechanisms. One could not preclude that, for instance, in the case of the anomalous diffusion
of adsorbed molecules at liquid surfaces [7] (dw < 2) completely different mechanisms are
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acting than for the case of diffusion on a fractal (dw > 2). Nonetheless, most linear [8–12]
or nonlinear [13] approaches for mathematically describing anomalous diffusion have either
explicitly or implicitly been developed with a fractal structure in mind, which implicitly
excludes the superdiffusive cases where dw < 2.

The limitations of the different approaches in the subdiffusive case were discussed in a
previous paper [14]. It showed that a number of proposed differential equations for anomalous
diffusion on a fractal did not work. While these heuristic models exhibit the correct second
moment behavior none match both asymptotically and at smaller scales. In subsequent papers,
we took an entirely new approach [15, 16] with the aim of developing a direct mechanism to
obtain governing equations.

After considering the subdiffusive case it is natural to consider anomalous diffusion in
the superdiffusive regime. Modeling superdiffusive processes is of great importance from the
point of technological application, where predictions of the density of the diffusing particles
have to be made. We have looked previously at certain features of this regime [17–19], by
using fractional diffusion equations, and found surprising features in the entropy production
of such processes. They were intimately connected both to the dynamics and to the form of
the probability density function (PDF).

While the diffusion on a Sierpinski gasket served as a prototypical model for subdiffusive
behavior, we use a mesoscopic master equation based model [20, 21] here, rooted in the
probabilistic description of dynamical maps, as our reference system for the superdiffusive
case. That system is based on a master equation dynamics for the probability flow on a nested
hierarchical set structure, which has been analyzed in depth. It will be referred to below as the
tree-superdiffusion model. The PDF in d-dimensional spaces can be determined for it. We
use that result to consider whether any of the continuum diffusion models suggested in the
literature possess PDFs which are close, or equal, to the PDF obtained from the tree model.

We note that most of the continuum diffusion models are limited in their range of allowed
dw values, while the tree model is able to extent into the regime of turbulent diffusion. For the
purpose of this analysis we limit 1 < dw < 2.

After a short presentation of the tree-superdiffusion model we introduce four continuum
diffusion models. We show that they all show the proper time dependence of the second
moment of their respective PDF, and trace this property back to the invariance of these model
PDEs (partial differential equations) under a one-parameter scaling group. Then we focus
on the form of the PDFs, as the different nature of the underlying diffusion processes will
manifest itself in those. We then compare those PDFs with that from the tree superdiffusion
in order to find parallels and differences. Our paper concludes with the interesting result that
the model of Compte and Jou is the only one of the models surveyed to provide a good link
with this dataset.

2. Tree-superdiffusion

The prototype model for superdiffusion to which we will compare the continuum models
shows a distinctive tree structure. It belongs to a class of hierarchical models which play an
important role in physics. They have been successfully used in the context of slowly relaxing
systems like glasses, in the understanding of ageing phenomena in spin glasses, and in the
analysis of complex dynamical maps. The tree model was suggested by Grossmann, Wegner
and Hoffmann [20, 21] and is based on a master equation which transports probability on a
nested set of intervals in a d-dimensional space with a tree structure [20]. It is able to produce
a variety of different time dependences for the moments of the distribution [21]. This model
can be used to mimic the transport of particles in a turbulent flow. In that case the nested
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Figure 1. Geometric structure of a tree model with z = 2 and µ = 3.
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Figure 2. Brief description of the dynamics for the tree model.

intervals are representatives for the eddies of different sizes. For an appropriate choice of
parameters one can obtain the desired time dependences, for example

〈r2〉 ∝ t3, (2)

which would correspond to a fully developed turbulent diffusion which is faster than ballistic
transport.

The geometric structure of a one-dimensional version of the model is shown in figure 1.
Let us consider a set of intervals Ik,i arranged in levels k = 0, 1, . . . and labeled i = 0, 1, . . .

within each level. All intervals for a given level k are of the same size lk = µlk−1 = µkl0,
with the size of the lowest level chosen arbitrarily as l0 = 1. A nested hierarchical structure is
imposed by the condition that any intervals Ik,i and Ik,j with i �= j shall be disjoint and that an
interval Il,j shall contain the intervals Ik,i with k � l and i = jzl−k, . . . , (j + 1)zl−k − 1. For
instance, with the number of sub-intervals z = 2 as in figure 1 the interval I2,1 must contain
the intervals I1,2, I1,3, I0,4, I0,5, I0,6 and I0,7. This structure is self-similar in the sense that if
r ∈ I0,i then µkr ∈ Ik,i .

Now we recapitulate the dynamics of a random walk on this tree structure (see figure 2):
the set of allowed positions of the walker is the intervals Ik,i . A walker may move upwards
from interval Ik,i to Ik+1,�i/z� with the rate ŵk = skŵ0 where �i/z� denotes the largest
integer not greater than i/z. Similarly it may move downward to any of the intervals
Ik−1,iz+j ; j = 0, 1, . . . , z − 1 with a rate α̂k = sk−1α̂0/z. The parameter s describes the
rate scaling along the hierarchy, while the ratio ρ = ŵ0/α̂0 is the growth ratio. If ρ > 1,
the upward transitions between adjacent level pairs dominate, if ρ < 1, walking downward is
dominant. We chose the time unit such that w0 = 1. The parameters (s, ρ, z, µ) define the
model completely. Introducing the (overall) probability density Pk,i(t) as the probability of
the walker being in interval Ik,i at time t, the master equation for the dynamic process reads

dPk,i

dt
=




−P0,i +
1

ρz
P1,�i/z� : k = 0

sk−1
z−1∑
j=0

Pk−1,zi+j −
(

sk−1

ρ
+ sk

)
Pk,i +

sk

ρz
Pk+1,�i/z� : k > 0.

(3)
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Figure 3. Second moments of the tree-diffusion PDFs for two different values of the random walk
dimension dw = 1.3 and dw = 1.8 as used in the following comparisons. One can see that the
scaling relation (1) is being fulfilled with only very little deviation for small times.

Initially, we assume all walkers concentrated in the leftmost interval at the lowest level

Pk,i(t = 0) = δk,0 δi,0. (4)

The time development of the dynamics is solved by considering the master equation (3)
in matrix form Ṗ (t) = MP(t) and diagonalizing the transition matrix M. Afterward the
probability distribution at any arbitrary time can be calculated by transforming the initial
distribution into the eigenbasis of M, utilizing the time and eigenvalue-dependent exponential
decay, and transforming backwards.

We note that the tree model has a kind of fractional structure but stress that this fractional
structure characterizes an additional dimension which is orthogonal to the radial distance on
which the transport finally occurs. It is different from diffusion on fractal structures which are
embedded in a higher dimensional space like the diffusion on a Sierpinski carpet.

While for a numerical solution the dimension of the master equation matrix has to remain
finite one can go to infinite size systems by using a special technique for solving the master
equation as given in [21]. Then, of course, the final solutions are in terms of infinite sums
which can be approximated in the continuum limit by integral representations.

For the scaling features of the PDF the exact distribution of the particles inside the intervals
Ik,i is of no relevance [21]. Here a constant distribution in each interval is used. The overall
P(r, t) is obtained by summing up the contributions from all levels by using the intervals
containing r. For the data shown in figure 3 we used z = 2, µ = 2, ρ = 9 and s = µ−dw .

Figure 3 shows the second moment of the PDF obtained within the above procedure for
two different values of dw, namely dw = 1.8 and dw = 1.3. While dw = 1.8 is relatively close
to regular diffusion, we expect to see clear deviations for dw = 1.3.

In a log–log plot the scaling relation (1) should lead to straight lines. Figure 3 shows
the expected scaling relation for tree-superdiffusion with only very small deviations for small
times. These are due to the finite resolution of the model which become unimportant at the
longer times we consider.

We now turn to the question, whether the tree-superdiffusion can be captured by continuum
diffusion models.

3. Continuum models for tree-superdiffusion

We examine a number of distinct continuum diffusion equations [8–13] which have been
proposed to describe anomalous diffusion. We discussed these models in the context of
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modeling subdiffusive behavior as found in the diffusion on fractal structures. While some of
those were constructed with the aim of modeling fractal diffusion, others had a wider range of
application from the beginning. For details we refer the reader to [14]; here we discuss only
those features and the respective background as needed.

The first important observation to be made is that all of the four continuum diffusion
equations we will study can be written as a—not necessarily linear—integro-differential
operator O acting on the PDF P(r, t) which is intended to describe the underlying random
walk process

OP(r, t) = 0. (5)

The second observation is that all four PDEs correctly reproduce the basic diffusion
property (1). The underlying reason for that is that these equations are all invariant under a
one-parameter similarity group, i.e. they are invariant under a scaling of the variables r and t:

r = r̃λβ, (6)

t = t̃λ, (7)

where λ is a scaling factor and β is a value to be determined by the structure of O. These
equations introduce similarity variables, which are also invariant under the group. Here we
choose a special one: η ≡ r/tβ , which is linear in r. For tree model computations we used
fixed r, varying t to get different values of η.

Due to the invariance of the PDE in question we can look for solutions of the formQ(r/tβ).
However, as explained in [14] these would not satisfy the normalization requirement. Instead
we need to search for solutions of the form

P(r, t) = t−β(1+a)G(η), (8)

where G(η) satisfies an equation BηG(η) = 0, with Bη being an auxiliary (integro-) differential
operator in one independent variable. Assuming that G(η) is positive in the full domain of η,
one has

1 =
∫

�

P (r, t)cra dr = tβ(1+a)

∫
�′

t−β(1+a)G(η)cηa dη =
∫

�′
G(η)cηa dη, (9)

where � is the domain of normalization in r space, �′ is the corresponding domain in η space
and cra dr is the volume element of a spherical shell at r with appropriate constants a and c.

Based on this form it follows that the mean-square displacement

〈r2〉 =
∫

�

r2P(r, t)cra dr = t2β

∫
�′

G(η)cηa+2 dη, (10)

which reduces to relation (1) if we set β = 1/dw and the integral is taken as the constant of
proportionality. Thus all the continuum diffusion equations satisfy the required scaling for the
second moment of the radial distance due to the one-parameter scaling present.

We thus expect that there is a broad class of (integro-) differential equations which
agree with (1), far exceeding those discussed above. To arrive at a specific equation, more
conditions (heuristic, empirical, physical or otherwise) are necessary, naturally leading to the
question posed here: which, if any, of the four equations to be introduced is able to model
tree-superdiffusion appropriately.

That part of P(r, t) = t−β(1+a)G(η), which is invariant under the action of the one-
parameter similarity group, G(η), will be referred to as the auxiliary function or the G-density
function (GDF), as it provides a time-independent representation of the PDF.
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4. Modeling superdiffusion

In the following we present four different functions, Gi(η), which are based on continuum
diffusion PDEs. They will be used in our comparison with the PDF from the tree-superdiffusion
model.

The GDFs of interest are

G1(η) = N1 exp(−κ1η
dw) (11)

G2(η) = N2H
1,0
1,1

(
κ2η

dw

∣∣∣∣∣
(
1 − φ

dw
, 1

)
(

1
2 − φ

dw
, dw

)
)

(12)

G3(η) = N3H
2,0
1,2

(
κ3η

dw

∣∣∣∣∣
(
1 − φ

dw
, 1

)
(
0, dw

2

)
,

(
1 − φ

dw
, dw

2

)
)

(13)

G4(η) = N4(1 + κ4η
2)

φ

dw−2 , (14)

where N1, . . . , N4 are suitably chosen normalization constants for the choice a = 0 and the
normalization domain 0 < η < ∞. This choice corresponds to the integration domain and a
used in the tree-superdiffusion model. G2 and G3 are H-functions [22]. For details see also
[23]. φ is a positive adjustable parameter, set greater than 0.01 to ensure convergence of H
function implementations. We use it in the superdiffusion regime to adjust the distribution
as well as possible to the observed data computed from tree-diffusion. Integrating over the
normalization domain and using special features of the H-functions one obtains

N1 = κ
1/dw

1


(1 + 1/dw)
(15)

N2 = dwκ
1/dw

2 

(

dw−φ+1
dw

)



(
3
2 − φ

dw

) (16)

N3 = dwκ
1/dw

3 

(

dw−φ+1
dw

)



(
1
2

)



(
3
2 − φ

dw

) (17)

N4 = 2

√
κ4

π



( −φ

dw−2

)



( −φ

dw−2 − 1
2

) . (18)

The GDFs relate to a picture of diffusion on underlying fractal structures that imply diffusion
under conditions of reduced connectivity compared to a full space. Thus they contain the
fractal dimension, df , as a parameter, which has a physical meaning. In our approach
above, this parameter, now renamed φ, becomes a mere parameter, open for adjustment in a
fitting procedure, because the picture of an underlying fractal is not relevant to the case of
superdiffusion. Also, the normalization, if carried out with a fractal structure in mind naturally
leads to the choice a = df − 1, which is again different in our approach for the superdiffusive
regime, where a = 0.

The first GDF (11) originates from an equation due to O’Shaughnessy and Procaccia
[8, 9]:

∂

∂t
P (r, t) = D1

rdf −1

∂

∂r
rdf −dw+1 ∂

∂r
P (r, t). (19)
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It was most meticulously linked to the underlying structure of the Sierpinski gasket. Thus it
was not aimed in the first instance at superdiffusion. However the equation retains the correct
invariance properties into the superdiffusion domain.

Solving (19) leads to

P1(r, t) = dwπ−df /2

( df

2

)
2


( df

dw

) (K1t)
− df

dw exp

(
− rdw

K1t

)
, (20)

from which we conclude that the normalization constant would be

N̂1 = dwπ−df /2

( df

2

)
2


( df

dw

) K
− df

dw

1 . (21)

This constant is analogous to N1 but differs by a factor of 2 as it is normalized over the full
space, and it differs because a = df − 1 instead of 0.

The second GDF (12) is based on the solution to a fractional-order partial differential
equation,

∂
1

dw

∂t
1

dw

P (r, t) = − D2

r
df

dw
− 1

2

∂

∂r

(
r

df

dw
− 1

2 P(r, t)
)
, (22)

proposed by Giona and Roman [10, 11] through various heuristic arguments. This PDE is
solved by the PDF

P2(r, t) = dwπ−df /2

( df

2

)
2


(
df + 1

2 − df

dw

) (K2t)
− df

dw H
1,0
1,1

(
rdw

K2t

∣∣∣∣∣
(
1 − df

dw
, 1

)
(

1
2 − df

dw
, dw

)
)

. (23)

This leads directly to

N̂2 = dwπ−df /2

( df

2

)
2


(
df + 1

2 − df

dw

)K
− df

dw

2 , (24)

which corresponds to N2, but with the different specifications indicated above.
Our third GDF (13) comes from a fractional differential equation developed by Metzler

et al [12]:

∂
2

dw

∂t
2

dw

P (r, t) = − D3

r
2df

dw
−1

∂

∂r
r

2df

dw
−1 ∂

∂r
P (r, t), (25)

where D3 is an adjustable diffusion-like constant [23] inserted into the equation to allow
comparison with arbitrary experiments.

Like the previous fractional order model, it was constructed by heuristic arguments which
focused on achieving appropriate asymptotic behaviors. It, and its fractional order companion
above, did well in the subdiffusive case. Both maintain the correct invariance properties in the
superdiffusive domain.

Solutions of this differential equation can be obtained again in terms of H-functions
[12, 23] to yield the PDF

P3(r, t) = dwπ−df /2

2

(
1 + df

2 − df

dw

) (K3t)
− df

dw H
2,0
1,2

(
rdw

K3t

∣∣∣∣∣
(
1 − df

dw
, 1

)
(
0, dw

2 ),
(
1 − df

dw
, dw

2

)
)

. (26)
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Thus, the normalization constant is

N̂3 = dwπ−df /2

2

(
1 + df

2 − df

dw

) (K3)
− df

dw , (27)

paralleling N3.
Our last GDF (14) is based on a differential equation suggested by Compte and Jou [13]:

∂

∂t
P (r, t) = qD4df

dw + df − 2

∂

∂r
rdf −1 ∂

∂r
(P (r, t))

dw+df −2

df , (28)

where the constants D4 and q are combined into one adjustable constant K4 ≡ qD4. In
contrast to the others this differential equation is nonlinear and does not involve fractional
order operators. It was deduced with arguments based on non-equilibrium thermodynamics.

The PDF solving (28) is then given in [13] as

P4(r, t) = BK
− df

dw

4

(
A2 +

r2

(K4t)
2

dw

) df

dw−2

, (29)

with A and B being suitably defined constants, implying a corresponding normalization
constant. Note that this solution is different from that in the subdiffusive case [13, 14].

5. Fitting the model and comparison

In order to study the quality with which the different continuum approaches can model a case of
superdiffusion, we compare the respective GDFs (equations (11)–(14)) to tree-superdiffusion.

We used two different parameter sets for determining the GDF of the tree model, leading
to different random walk dimensions dw = 1.8 describing diffusion relatively close to normal
diffusion and dw = 1.3 describing faster superdiffusion processes. In each case we look
at the GDFs on a linear scale for analyzing the behavior in the domain near the peak of
the distribution and look at the GDFs on a logarithmic scale to assess the behavior of the
distribution’s asymptotic tails.

Close to the peak we fitted the GDFs by least squares in the range of η ∈ [1.0, . . . , 3.0].
For the asymptotic tails we obtained the best least-squares fit of the logarithm in the range
of η ∈ [5.0, . . . , 10.0]. The fitting error is minimized by adjusting the GDFs free model
parameters indicated.

The random walk dimension dw for all models is given by the scaling of the second
moment of the probability density function and therefore needs to be equal for all models, in
other words: it is a global parameter. The results are shown in figures 4–7.

As indicated, for the first GDF we take κ1 (>0) and φ as adjustable parameters that are
determined by a fit of G1 to the data of the tree-superdiffusion. For small η, it turns out that
G1 is in good agreement with the reference solution in both cases. However, in figures 5 and 7
show that G1(η) has difficulties in the asymptotic regime as previously mentioned in [24].
Surprisingly, the agreement in the asymptotic case is better for dw = 1.3 than for dw = 1.8.

For G2(η) we used κ2 and φ as adjustable constants too. As figures 5 and 7 show, the
asymptotical behavior of this GDF in the superdiffusive case is not adequate. However it does
more or less agree for small η in the case of dw = 1.8, when η is not too close to the origin
(i.e. η � 0.1) . Notably, at the origin itself, there is a singularity. This anomaly appears for
G2 in all four comparison plots.

For G3(η) we used κ3 and φ as fit parameters. Here the asymptotic behavior is not satisfied
in the superdiffusive case. However, it turns out that G3(η) agrees well with the reference
distribution for small η when dw = 1.8, but not so well when dw = 1.3 (see figures 4 and 6).
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Figure 4. This is the GDF versus η in the case of dw = 1.8 presented on a linear scale.
The behaviors of the different models are compared near the peak by fitting on the interval
η ∈ [1.0, . . . , 3.0]. The reference model data are denoted by circles and reduced in number
to facilitate clarity in viewing the other models. All of the models reproduce the tree-diffusion
behavior acceptably for smaller η, with increasing deviation for decreasing η. For η < 1,G2
begins to diverge as η vanishes. The other models slightly overestimate the tree data near the
origin, but elsewhere are relatively accurate. At the origin, however, there is the notable exception
that G2 is singular.
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Figure 5. This is the GDF versus η in the case of dw = 1.8 on a logarithmic scale. The fit has
been performed on the interval η ∈ [5.0, . . . , 10.0] on logarithmic values to compare behaviors in
the asymptotic tail. As one can see, the only model matching the tree-diffusion behavior is G4.

In the latter case the function develops a pronounced maximum near η = 1 which is not seen
in the reference case or in any other model.

For G4(η) we used κ4 and φ as fit parameters. While in the subdiffusive case, the above
approach was not so successful [14], it is by far the best in the superdiffusive case. In the case
of small η it does agree as well as any other (see figures 4 and 6). In fact in the more extreme
case of superdiffusion (dw = 1.3) it improves. But in the asymptotic regime it is by far the best.
It is the only one of the approaches discussed here that shows an acceptable agreement in the
asymptotic range (see figures 5 and 7).

As one can see in figures 4–7 the overall behaviors of the different diffusion models are
quite different from each other. In the asymptotic regime, for both dw-values studied, the
function G4 is sub-exponential for large η, just as the reference data are. All other models
have super-exponential tails (see figures 7 and 5). Overall, we find that the only model capable
of reproducing the behavior of the tree-superdiffusion in both the peak and asymptotic regimes
is G4—the model of Compte and Jou.
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Figure 6. This is the GDF versus η in the case of dw = 1.3 presented on a linear scale.
The behaviors of the different models are compared near the peak by fitting on the interval
η ∈ [1.0, . . . , 3.0]. The reference model data are denoted by circles and reduced in number to
facilitate clarity in viewing the other models. This case is further into the superdiffusion regime
than the case of figure 4. The range of behaviors grows for small η, not only in magnitude but
qualitatively as well. G2 is singular at the origin, as before, but it also develops a pronounced
wobble near η = 1. G2 has a pronounced maximum near η = 1 and declines toward the origin. In
contrast the performance of G1 and G4 improve relative to the previous case.
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Figure 7. This is the GDF versus η in the case of dw = 1.3 on a logarithmic scale. The fit has
been performed on the interval η ∈ [5.0, . . . , 10.0] on logarithmic values to compare behaviors in
the asymptotic tail. As one can see, the only model matching the tree-diffusion behavior is G4.

6. Discussion and summary

We presented a hierarchical tree-based model used in a variety of applications, which provides
a mesoscopic description of superdiffusion. The question we posed was, whether there exist
known continuum diffusion models, which can adequately model the probability density
function for superdiffusion as represented by the tree model.

All of the analyzed fractional diffusion equations have the correct scaling in the second
moment of the probability density function in the superdiffusive domain, as we have shown
(1). However, as already mentioned, complying with the scaling behavior is necessary but
far from sufficient for a PDF to be adequate. There exist an infinite number of different
probability distributions with the correct scaling behavior, even though most of them will not
be physically sensible.

As pointed out above one expects that the underlying mechanisms generating subdiffusive
and superdiffusive processes might be different. One can also envision that there are physically
different mechanisms generating different superdiffusive processes. However the goal was to
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make a specific comparison as has been previously carried out in the subdiffusive case in terms
of the Sierpinski gasket. There is no particular reason to use that fractal for subdiffusion, but
it provides a specific context for calculations and discussion. Correspondingly, we have used
the tree-diffusion model as a specific context in which to study superdiffusion.

The respective continuum diffusion models were previously considered in the subdiffusive
case. No suggestion is made that their originators have proposed that they be applicable
in the superdiffusive regime (except Compte and Jou). Nonetheless, they are all clearly
mathematically defined in the superdiffusive regime and they have all done surprisingly well
given that they may have not been originally envisaged in that context.

Among them, the model of Compte and Jou stands out as the most consistently effective
in both the peak and asymptotic regimes. It remains an interesting question why the model
of Compte and Jou correctly reproduces the asymptotic behavior of the tree-superdiffusion,
while it failed in reproducing the asymptotic behavior of the probability distribution produced
by a random walk on a fractal [14]. At this point we can only speculate. One interesting fact
is that Compte and Jou developed their diffusion equation based on very general arguments
while the other diffusion equations are usually connected to the diffusion on fractals. The
diffusive properties of the tree model are different from the usual fractal diffusion approach in
that the additional dimension of the tree model enhances the transport rather than hinders it.
This greater richness and the more general approach in the Compte and Jou diffusion equation
might be an explanation for the good agreement.
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